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Abstract

Through analysis and empirical simulations on synthetic data, we investigate

how the inductive biases of simple embedding architectures affect feature learning

in a self-supervised learning method, MatrixSSL. We compare this to Spectral

Contrastive Learning (SCL), a method with prior inductive bias aware analyses.

Analogously to the mean-based condition for SCL from prior work, we find a

second-order moment-based condition on embedding functions that guarantees

optimal MatrixSSL alignment loss, producing a closed-form expression. Then

provided a choice of embedding architecture and data distribution, we analyze

the features are learnt in the embedding weights. We do so for several toy

distributions, finding that in the case of linear and one layer ReLU network

embeddings, neither method appears to have an advantage in learning features.

Noticing then that this second-order moment-based assumption is equivalent to

the mean-based assumption that minimizes SCL loss under a quadratic feature

map, we propose that the representational benefits of the MatrixSSL loss can
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be achieved with a single quadratic transformation.

1 Introduction

Self-supervised learning (SSL) aims to replicate the capabilities of supervised training

without labels, relying instead on structure inherent within data to learn effective

representations without being bottlenecked by the cost of obtaining labeled data.

Given the unparalleled availability of unlabeled data, SSL methods have served as

a key component behind the empirical successes of current deep learning methods.

Despite this, our theoretical understanding of SSL methods is still developing, and

the forefront of SSL theory research has focused on contrastive learning methods.

This thesis aims to expand upon current theoretical understanding of the interactions

between self-supervised learning methods, architectural inductive biases, and their

representational capacities, and how they affect downstream representation quality.

In Section 2, we survey the dominant SSL methods in practive (Section 2.1) and

provide a brief history of developments in SSL theory (Section 2.2). In Section 3,

we hone in on Spectral Contrastive Learning, provide background on its theoretical

development. We introduce a novel method, Matrix-SSL (Zhang et al. [2024]), which

claims to provide a larger solution space of representations by aligning covariances

of embeddings, rather than aligning embeddings. In Section 4 we perform various

preliminary experiments and analyses to compare SCL and MatrixSSL. Section 5

builds upon the findings of Section 4, where we prove equivalence of second-order

and first-order moment alignment losses up to a quadratic reparameterization. Our

key contributions are as follows:

Contributions:

• We survey the landscape of self-supervised learning methods, and existing
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attempts to theoretically characterize it.

• We construct an alternative alignment loss to Matrix-SSL which aligns second-

order moment information of embeddings. We find a second-order moment

based condition on the embedding function (and data distribution), analogously

to the first-order/mean-based condition in HaoChen and Ma [2022], which

minimizes this second-order alignment loss.

• We find, through analysis and empirical simulations on synthetic data, that

neither SCL nor MatrixSSL appear to outperform one another.

• We prove that the first-order moment alignment loss in SCL is equiv-

alent to the second-order moment alignment loss, up to a quadratic

reparameterization.

• We propose that the full SCL loss can, with the added quadratic transformation,

in principle achieve the same representations that a second-order moment based

method like Matrix-SSL can, and that any benefits of second-order methods

are purely optimization related.

2 Survey of Self-Supervised Learning

Before we dive deeper, it helps to recall the goal of SSL: to obtain useful representations

from unlabelled data. In the context of image classification, a widely adopted

standard in SSL research, representations are broadly useful if 1) within the same

class, representations are similar and invariant to spurious patterns within the

data, and 2) representations are informative across classes, i.e representations of

different classes are distinguishable. Of these, the first criterion is usually easier

to implement explicitly. Since the data are unlabeled, a critical design question
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concerns how we define what images are within the same class. A common method

in practice is use to use augmentations that preserve the semantics of the image

(color distortions, rotations, crops, flips, etc.) to produce two views of the same

image. These views are then treated as ’positive samples’ from the same class,

whose embeddings are encouraged to be similar by means of some combination of

architecture and losses. However, a method that naively optimizes the first criterion

only is prone to the representation collapse problem, in which all points in all classes

are given the same constant embedding - in this case, criterion 1 is perfectly fulfilled,

as the representations of all points in the same class are exactly the same, but

criterion 2 fails completely, as the representation is unable to distinguish between

different classes. A common trend amongst methods that explicitly optimize the first

criterion is to implcitly prevent collapse through some implementation that ensures

that different classes are embedded differently, and some methods covered below can

be distinguished in this sense.

With that, most modern SSL methods can be broadly categorized into one of the

following: contrastive learning , self-distillation based methods, CCA based methods,

and masked image modeling (MIM) methods. We cover each below:

2.1 Methods in Practice

Contrastive Learning (CL) Contrastive learning (CL) methods aim to learn

an embedding function such that similar points are embedded close to each other,

whereas dissimilar points are embedded far apart within the embedding space. This

is facilitated via a metric loss function defined over the embedding space. SimCLR

(Chen et al. [2020]) embeds and projects two randomly augmented views of the

same image through the same encoder and projector, and evaluates the quality of

embeddings using a loss calculated over all pairs of augmentations: Denoting P as
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the set of positive pairs of projected embeddings (zi, zj) without duplicates by tuple

ordering, they use the loss function

LNT-Xent =
1

2N

∑
(i,j∈P )

li,j+lj,i where li,j = − log

(
exp(CoSim(zi, zj)/τ∑2N

k=1,k ̸=i exp(CoSim(zi, zk)/τ

)

Where CoSim(., .) is the cosine similarity between two vectors (i.e the normalized dot

product). Note that the loss is minimized by maximizing similarity between positive

pairs, and minimizing similarity between augmentations of different images (negative

pairs). SimCLR, like other CL methods, avoids the collapse problem by explicitly

incorporating the similarity of negative pairs in the loss function. While SimCLR

can perform very well empirically, the method is primarily disdvantaged by the need

for many negative samples to perform effective CL, which can result in large training

times. Another CL method, MoCo (He et al. [2020]), reduces the large batch size

requirement of SimCLR by using two different encoders, an online and a momentum

encoder. The weights of the online network are updated via backpropagation, and

the momentum encoder’s weights are updated as an exponential moving average of

the online encoder’s weights. The outputs of these networks are fed into a contrastive

loss as before, but MoCo uses a moving dictionary of updated embeddings in place

of a large batch, resuing embeddings from earlier batches.

Self-Distillation Based Methods Self-Distillation Based methods are built on

the idea that, given embeddings of two augmented views of the same image, one

can improve representations by trying to predict one embedding from the other, and

optimizing so that the prediction is similar to the target embedding. On its own, this

would lead to collapsed representations, so in practice this is avoided by incorporating

some implementational structure. The most well-known of these, BYOL (Grill et al.

[2020]), uses two separately parameterized encoder-projectors, an online network
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whose output is used to predict the output of a target network. Only the weights

of the online encoder are updated via backpropagation, while the target network’s

weights are set to be an exponential average of the online network, so that both

encoders’ representations improve with each iteration. This asymmetry is crucial to

BYOL’s performance.

Canonical-Correlation Analysis (CCA) Based Methods Canonical Corre-

lation Analysis finds a linear transformation of two views of data such that the

dimensions of the transformed data are uncorrelated. CCA-based methods attempt

to decorrelate the representations of two different views.

Masked Image Modeling Methods Masked Image Modeling (MIM) methods

mask portions of an input image and attempt to generate them. MIM methods evolved

as an image-domain equivalent to Masked Language Modeling (MLM) methods. MIM

methods developed from BEiT Bao et al. [2021], which cast the existing classification

problem of BERT Devlin et al. [2018], an MLM method, to a regression problem.

The two main methods in this field are Masked Autoencoders (MAE) He et al. [2022]

and SimMIM Xie et al. [2022].

2.2 Self-Supervised Learning Theory

While research in SSL theory is an emerging field, there exist various lines of study

across various methods. This section outlines some developments.

One such line of work involves delineating precise conditions on which performance

guarantees can be made from learned representations. Arora et al. [2019] do so for

contrastive learning algorithms. Given positive pairs (x, x+) that can be sampled

conditionally independently (CI) given an underlying latent variable (such as classes),

and negative samples x− that can be sampled independently, then minimizing the
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unsupservised contrastive loss function L(f) = Ex,x+,x− [f(x)⊤(f(x+) − f(x−)))]

results in an embedding f̂ on which a linear classifier achieves error bounded by the

minimum unsupervised loss, plus a generalization error dependent on the Rademacher

Complexity of the function class of f . However, the conditional independence

assumption is unrealistic, as practically positive pairs are only independent conditioned

on the class label (which is unavailable in SSL), or conditioned on the original image

if using augmentations.

Similarly, Lee et al. [2021], focusing on reconstruction based methods that involve

predicting some proxy variable X2 from X1 for downstream label Y , show that

when X1, X2 are CI given Y , and X2|Y has rank equal to the number of classes,

then optimizing an embedding to predict X2 produces an embedding function ψ∗ =

argming E∥X2 − g(X1)∥2 on which a linear classifier can perfectly replicate the true

function. However, they also extend their analysis to Approximate CI (ACI) by

defining a measure for ACI: ϵ2CI = EX1 [∥E[X2|X1]− EY,Z [E[X2|Y,Z]|X1]∥2], where

Z are further latent variables that can be conditioned on. They show that for large

enough labelled and unlabelled samples, the generalization error of the linear classifier

on the embeddings is bounded by a sum including ϵCI, error on the pretext task (to

form the approximation error), and an estimation error that depends on the number

of labelled samples. A closely related study is Tosh et al. [2021], which examines the

multi-view setting, where X1, X2 are views of/with label Y . They show that, when

X1, X2 contain redundant information about Y , then a strategy for predicting Y is

to predict X2 from X1, then predict Y from the prediction of X2, which they show

has bounded error. Specifically, they show that

E[(E[E[Y |X2]|X1]− E[Y |X1, X2])
2] ≤ (

√
εX1 +

√
εX2)

2

where εW = E[(E[Y |W ] − E[Y |X1, X2])
2] (for W = X1 or X2) is a measure of the
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redundancy between X1, X2 wrt Y (the smaller, the more redundancy). The LHS of

the inequality gives the error of the strategy outlined above.

HaoChen et al. [2021] develop a more realistic framework for contrastive learning

without the conditional independence assumption of classes in Arora et al. [2019].

They consider an underlying population augmentation graph where any possible

augmentation of a natural datum corresponds to a node, and edges connect augmen-

tations that could have been produced from same natural data. The key idea is that,

despite not having all nodes within the same class being directly connected by an

edge (thus allowing the distribution of augmentations to change throughout the class),

any two nodes within the same class are connected via a series of augmentations. At

the same time, any two augmentations from different classes are highly unlikely to be

connected by an edge. With this setup, a natural clustering structure corresponding

to each class arises within the population augmentation graph, and the task of

learning representations can be reframed as performing spectral clustering on the

population augmentation graph. In traditional spectral graph theory, this involves

eigendecomposing the Laplacian matrix and stacking the largest m eigenvectors as

columns in an embedding matrix. The rows of this embedding matrix then serve as

the embedding of the corresponding data in the graph. Since this does not provide

a parametric embedding function that can be applied to other points, the authors

parameterize the rows of the embedding matrix with the weights of a neural network,

and minimize a loss that encourages the network weights to learn these feature

extractors. They find that the loss that encourages is contrastive in nature - they

term their task Spectral Contrastive Learning (SCL). For an embedding function

f , the Spectral Contrastive Loss is

LSCL = E(x,x′)∼p+∥f(x)− f(x′)∥22 + λ∥Ex∼pd [f(x)f(x)
⊤]− I∥2F
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3 Investigating SCL and Matrix-SSL

We now turn our focus to investigating the representational capacity of two specific

self-supervised learning methods, Spectral Contrastive Learning (SCL) and Matrix-

SSL.

3.1 Notation

Let (x, x′) denote a positive pair, commonly viewed as two randomly sampled

augmentations of the same natural image. The distribution over positive pairs p+ is

a symmetric distribution over X × X , where X ⊂ Rl denotes the space of possible

augmentations. Marginalizing p+(·, ·) over either entry results in the (same) marginal

distribution over augmentations, which we denote pd. We assume augmentation

data is l-dimensional and embeddings are k-dimensional. Throughout we denote

embedding functions as f : X → Rk, from function class F . We refer to the ith row

and jth column of matrix Z as (Z)i,. and (Z).,j respectively.

3.2 Background

Spectral Contrastive Learning (SCL) is a contrastive learning method, supported

theoretically by the population augmentation graph construction which applies to

more realistic settings. The SCL loss is written as

LSCL = E(x,x′)∼p+∥f(x)− f(x′)∥22 + λ∥Ex∼pd [f(x)f(x)
⊤]− I∥2F

Two important developments in SSL theory research should also be noted: First is

the alignment and uniformity framework in contrastive learning developed by Wang

and Isola [2022], which suggests that the successes of contrastive learning methods

can be attributed to two properties of the loss function: alignment, which encourages
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closeness of positive pairs in embedding space, and uniformity, which encourages the

distribution of (normalized) embeddings to be uniform on the hypersphere. Under this

framework, we can interpret the SCL loss terms accordingly: the first term encourages

alignment by incentivizing positive pairs to be similarly embedded, and the second

term encourages uniformity by incentivizing the covariance matrix of embeddings to

be close to the uniform distribution. Second is the need to account for the inductive

biases of the architecture and training algorithm used to learn representations. In

the context of contrastive learning, Saunshi et al. [2022] underscores this importance

by providing a simple learning example on which different architectures yield vastly

differing downstream performances.

In a follow-up to this and their original SCL paper, HaoChen and Ma [2022] consider

assumptions on the inductive biases of the architecture required to guarantee down-

stream classification performance for SCL learnt representations. Specifically, for

embedding function f they assume that (1) for any augmentation x, the embedding

function f retains its value f(x) on average over other points x′ that could form a

positive pair with x, and (2) the dimensions of the embeddings are orthogonal on

average over all augmentations. Mathematically, these assumptions are

Assumption 1 f(x) = Ex′|x[f(x
′)]

Assumption 2 Ex∼pd [f(x)f(x)
⊤] = Id

where p(x′|x) := p+(x, x
′)/pd(x) is the conditional distribution of augmentation x′

given x. More formally, they assume the existence of approximately orthogonal

eigenfunctions to the Laplacian operator over the population augmentation graph.

A recent study proposed Matrix-SSL (Zhang et al. [2024]), an SSL method claiming

to achieve better downstream performance over existing methods. They specifically

rewrite the alignment loss to encourage similarity in the covariance matrices of
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embeddings, rather than similarity of the embedding matrices themselves. The

Matrix-SSL loss is defined with respect to sample covariances of embeddings calculated

using batches. Let X1, X2 ∈ Rn×l denote size n batches of augmentations, where

the ith row of X1 and X2 form a positive pair. Denote the matrix of embeddings

of these rows as Z1, Z2 ∈ Rn×k, where k is the embedding dimension (i.e (Z∗)i,. =

f((X∗)i,.). The sample covariances are then denoted C(Z1, Z2) :=
1
nZ

⊤
1 HnZ2, where

Hn := In − 1
n1n1

⊤
n is the idempotent centering matrix. Then, the Matrix-SSL loss is

defined as

LMatrix-SSL = MCE
(
1

k
Ik, C(Z1, Z2)

)
−TrC(Z1, Z2)+γMCE(C(Z1, Z1), C(Z2, Z2))

Where MCE(P,Q) is the Matrix Cross-Entropy of matrices P,Q, the matrix equivalent

of cross-entropy. This quantity is minimized when P = Q. The first term corresponds

to the uniformity loss, encouraging the sample covariance (across embeddings) to be

equal to the identity, and the remaining terms encourage the sample autocovariances

C(Z1, Z1), C(Z2, Z2) to be similar. The authors claim this allows for a larger solution

space of embeddings - intuitively, this makes sense, as it’s possible to have Z1Z
⊤
1 =

Z2Z
⊤
2 (as the Matrix-SSL loss would encourage) but not have Z1 = Z2 (as typical

contrastive learning methods encourage).

4 Preliminary Results

Second Order Moment Loss As before, the Matrix-SSL alignment term is mini-

mized when the covariances of embeddings C(Z1, Z1) and C(Z2, Z2) are equal. We

note this is an unusual method for aligning second-order information across augmen-

tations, as this can be made true simply by making batch sizes large. Specifically,
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the condition C(Z1, Z1) = C(Z2Z2) is a finite sample version of the condition

∥E(x,x′)∼p+ [f(x)f(x)
⊤ − f(x′)f(x′)⊤]∥2F = 0

But since the positive pair distribution is already symmetric, then the marginal

distributions are equal, so

E(x,x′)∼p+ [f(x)f(x)
⊤ − f(x′)f(x′)⊤]

= Ex∼pd [f(x)f(x)
⊤]− Ex′∼pd [f(x

′)f(x′)⊤] = 0

so the LHS itself already evaluates to 0. In the finite sample space, the condition can

be written as

1

n

n∑
i=1

(
f(xi)−

1

n

n∑
i=1

f(xi)

)(
f(xi)−

1

n

n∑
i=1

f(xi)

)⊤

=
1

n

n∑
i=1

(
f(x′i)−

1

n

n∑
i=1

f(x′i)

)(
f(x′i)−

1

n

n∑
i=1

f(x′i)

)⊤

and as n approaches infinity, the two quantities can approach each other. Note

that this holds regardless of the choice of f , so in principle the Matrix-SSL loss

could be minimized without learning any relevant features (eg. if f were the identity

mapping). Given this and the added difficulty of analyzing matrix logarithm terms,

we consider an alternative loss that still aligns second-order moment information

while avoiding this property inherent in Matrix-SSL. Specifically, we define the second

order alignment term

LMeanNormDiff = E(x,x′)∼p+∥f(x)f(x)
⊤ − f(x′)f(x′)⊤∥2F
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and and consider the loss

LSecondOrder(f) = LMeanNormDiff + ∥Ex∼pd [f(x)f(x)
⊤]− I∥2F

For the alignment term in this loss, the expectation is effectively taken outside the

norm, rather than within. From here onwards, whenever we mathematically analyze

loss terms, we consider this second order loss in place of Matrix-SSL.

Next, we show that, when we consider a second-order moment-based assumption

analogous to Assumption 1, the alignment loss LMeanNormDiff is minimized.

Assumption 3 f(x)f(x)⊤ = E[f(x′)f(x′)⊤|x], ∀x ∈ X .

Note that this isn’t exactly an assumption on the conditional covariances, but rather

an assumption on the conditional second-order moment of embeddings. Under this

assumption, the alignment term LMeanNormDiff(f) is minimized:

Theorem 1 Assumption 3 minimizes the second-order moment alignment term

LMeanNormDiff

Proof: We start by expanding the loss:

LMeanNormDiff(f) = E(x,x′)∼p+∥f(x)f(x)
⊤ − f(x′)f(x′)⊤∥2F

= 2Ex∼pd∥f(x)f(x)
⊤∥2F − 2E(x,x′)∼p+

[
Tr(f(x)f(x)⊤f(x′)f(x′)⊤)

]

Then, looking at the trace term, we get

− 2E(x,x′)∼p+

[
Tr(f(x)f(x)⊤f(x′)f(x′)⊤)

]
= −2Ex∼pd

[
Tr(f(x)f(x)⊤Ex′|x[f(x

′)f(x′)⊤])
]

applying the law of iterated expectation

= −2Ex∼pd

[
Tr(f(x)f(x)⊤f(x)f(x)⊤])

]
applying Assumption 3

= −2Ex∼pd∥f(x)f(x)
⊤∥2F sinceTr(AA⊤) = ∥A∥2F
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Substituting this back into the loss, we end up with LMeanNormDiff(f) = 0. Since the

Frobenius norm is always non-negative, then the term is minimized with value 0.

Analysis on Synthetic Data We now look for synthetic self-supervised learning

tasks, consisting of an augmentation scheme and a (downstream) labeling function, for

which representations learnt by MatrixSSL perform well on downstream tasks, while

representations learnt by SCL perform poorly. We do so primarily via mathematical

analysis (using the second order loss in place of Matrix-SSL). Since we note that

Assumptions 1 and 3 each minimize their respective alignment losses, then given

assumptions on the embedding function class of f and the positive pair distribution

p+, the Assumptions provide a closed form expression on which we can analyze what

the model weights can learn. Drawing from Saunshi et al. [2022], we focus primarily

on linear embedding functions f(x) =Wx in our analyses.

One set up was in R3, where augmentations had the form (x1, x2, x3) and (−x1,−x2, x3).

Under Assumption 1, SCL would learn to ignore the first 2 dimensions (i.e learn zero

weights for these dimensions), and learn ’free’ weights for the third dimension. If

the labels were determined by y = sign(x3), then SCL could properly learn the task.

Instead, using a label given by sign(x1x2) would not only preserve the label across

augmentations, but also lead to poor downstream performance for SCL. On the other

hand, for a 3× 3 embedding function W , simply setting Wi3 = 0 for all i ∈ [3] would

satisfy the corresponding assumption in MatrixSSL:

f(x)f(x)⊤ − Ex′|x[f(x
′)f(x′)⊤] =W (xx⊤ − x′x′⊤)W⊤

=


w11 w12 0

w21 w22 0

w31 w32 0




0 0 2x1x3

0 0 2x2x3

2x1x3 2x2x3 0



w11 w21 w31

w12 w22 w32

0 0 0

 = 0
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The resulting representation would ignore the third dimension and could properly

assign weights for the first two dimensions. However, the labeling function itself is

quadratic in the inputs, and so a quadratic classifier would be needed.

Another initial example we tried was to directly use the example from Saunshi et al.

[2022]: d dimensional boolean hypercube data for natural data, with augmentations

performed by leaving the first k dimensions unchanged and scaling each of the last

d− k dimensions by some factor τ distributed uniformly in (0, 1], sampled i.i.d across

both dimensions and augmentation sets. For brevity we call this the ’multiplication’

(mult.) augmentation scheme, and we analyze this in with d = 3, k = 1. Since

the natural data is boolean, then given an augmentation one can actually recover

exactly the natural data that generated it (one need only look at the sign of the

augmented dimension). Further, since the augmentations involve independent scaling

of the last d− k dimensions, the only labeling function that preserves labels across

augmentations is one that depends on the k unaugmented dimensions. Then we can

see that for the assumption in SCL to hold, we have that

gi(x)− Ex′|x[gi(x
′)] = w⊤(0, (τ2 − 0.5)x2, (τ3 − 0.5)x3) = 0

where w is the ith row of embedding function matrix W . This then learns free

weights for the (first) unaugmented dimension, and zero weights for the augmented

dimensions, since w2(τ2−0.5)x2)+w3(τ3−0.5)x3) must be equal to 0 for any choice of

x2, x3 ∈ ±1, and any choice of τ2, τ3 ∈ (0, 1]. Thus, SCL does well on the hypercube

task, suggesting we need to modify the setup slightly.

Since intuitively MatrixSSL learns to match the autocovariance matrices of the

embeddings across different augmentations, whereas SCL learns to directly match

the embedding matrices, the next tasks we tried involved correlating the dimensions

of the data together. We considered two such augmentation schemes, both with the
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same natural boolean hypercube data setting as earlier: first we consider pairs of

dimensions in the last d− k dimensions, and sample a single τ uniformly in [−1, 1]

for each; we then add τ to one of these dimensions, and subtract it from the other.

This allows us to have the label depend on either only the augmented dimensions or

on only the augmented dimensions, without the augmentations changing the label.

We call this the ’addition’ augmentation scheme. The assumptions on SCL predicts

that it learns free weights on unaugmented dimensions, and equal weights for each

pair of augmented dimensions.

In the other, we sample τ the same way for each pair of augmented dimensions,

but we add to each augmented dimension the quantity τ multiplied by the other

augmented dimension, i.e x2 + τx3, and x3 + τx2 in our example in R3. The SCL

assumptions predicts that it again learns free weights for unaugmented dimensions,

and can have either equal or negated weights for each pair of augmented dimensions.

Another setting we consider is one where data points x are constructed as a concate-

nation of k ’features’, each with dimension d: x = (x(1), ...x(k)), where features are

drawn from a marginal normal distribution, but across positive pairs, the features

are correlated along some underlying feature direction vj : for each j ∈ [k] :

(x(j), x(j)′) ∼ N

02d,

 Id vjv
⊤
j

vjv
⊤
j Id




The existence of latent features allows us to empirically check whether our embeddings

have properly learnt features. We term this data/augmentation setting ’correlated

normal features’. Through analyses, we find effectively the same solutions for SCL
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and the second order loss:

WSCL =

 v1
∥v1∥

⊤ 0⊤d

0⊤d
v2

∥v2∥
⊤

 and WSecondOrder =

 v1√
2∥v1∥

⊤ 0⊤d

0⊤d
v2√
2∥v2∥

⊤


Empirically, we train linear embeddings using Matrix-SSL and SCL on correlated

normal data with 5 features, each with dimension 5 (with underlying feature vec-

tors sampled randomly), setting the embedding dimension to 5. We evaluate the

embeddings by generating data according to the normal distribution, and for each

feature, labeling them by y = sign(v⊤j x
(j)). Then we train a linear probe on top of

the embeddings and evaluate accuracies for each feature, shown in Tables 1 and 2,

and visualized in Figure 1. Visualizations are also shown in Figure 2 for the same

training setup but with a ReLU added onto the embedding.

Figure 1: Average classification accuracies over five features for linear embeddings
learned by SCL and Matrix-SSL respectively. Note how it isn’t clear whether one
method outperforms the other.
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Feature 1 Feature 2 Feature 3 Feature 4 Feature 5
Run 1 0.486 0.504 0.503 0.997 0.499
Run 2 0.993 0.499 0.496 0.504 0.984
Run 3 0.996 0.996 0.498 0.499 0.500
Run 4 0.821 0.992 0.992 0.993 0.503

Table 1: Classification accuracies for each of five features, across four training runs of
SCL with a linear embedding architecture, trained on normal correlated feature data.

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5
Run 1 0.947 0.521 0.662 0.947 0.543
Run 2 0.708 0.951 0.929 0.861 0.568
Run 3 0.923 0.775 0.948 0.684 0.692
Run 4 0.540 0.539 0.947 0.590 0.941

Table 2: Classification accuracies for each of five features, across four training runs
of Matrix-SSL with a linear embedding architecture, trained on normal correlated
feature data.

Figure 2: Average classification accuracies over five features for one-layer ReLU
embeddings learned by SCL and Matrix-SSL respectively.
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5 Analysis

We note that Assumption 3 is equivalent to Assumption 1 with an added fixed

quadratic transformation. To give a minimal example, any function f : X → Rk

satisfying Assumption 3 defines a function g, given by

g : X → Rk(k+1)/2, g(x) = (f(x)21, ..., f(x)
2
k, f(x)1f(x)2, ...f(x)k−1f(x)k)

where the entries of g are all possible quadratic products of the outputs of f . Then

f(x)f(x)⊤ = E[f(x′)f(x′)⊤|x] directly implies g(x) = E[g(x′)|x]. This suggests that,

in terms of representational power, methods that align second-order information

are no more powerful than those that align first-order moments given a quadratic

transformation applied to its representations. This transformation can be fixed, as

given by the construction g above, or approximated to a certain degree with a number

of extra layers in the embedding function. We formalize this as follows:

Theorem 2 Suppose f is an embedding function with LMeanNormDiff(f) ≤ ϵ. Then

one can construct from f a new embedding function g such that LSCL(g) ≤ ϵ

Proof: We first expand the loss, which we know is bounded above by ϵ:

LMeanNormDiff(f) = E(x,x′)∼p+∥f(x)f(x)
⊤ − f(x′)f(x′)⊤∥2F

= E(x,x′)∼p+

∑
i,j∈[k]

(f(x)if(x)j − f(x′)if(x
′)j)

2

=
∑
i∈[k]

E(x,x′)(f(x)
2
i − f(x′)2i )

2 + 2
∑

i<j∈[k]

E(x,x′)(f(x)if(x)j − f(x′)if(x
′)j)

2 ≤ ϵ
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We will use the quadratic construction g from above. Then we can expand LSCL(g):

LSCL(g) = E(x,x′)∼p+∥g(x)− g(x′)∥22

= E(x,x′)∼p+

∑
i∈[k]

(g(x)i − g(x′)i)
2 +

k(k+1)/2∑
i=k+1

(g(x)i − g(x′)i)
2

=
∑
i∈[k]

E(x,x′)(f(x)
2
i − f(x′)2i )

2 +
∑

i<j∈[k]

E(x,x′)(f(x)if(x)j − f(x′)if(x
′)j)

2

where we get the last line since the first k terms of g correspond to squared terms of

f , and the remaining terms correspond to quadratic terms fifj where i < j. Since

all the terms within the expectations are positive, we know the expectation itself

must be positive. From comparing expanded terms, we see then that LSCL(g) <

LMeanNormDiff(f) ≤ ϵ, so LSCL(g) ≤ ϵ.

In other words, we’ve shown in principle that for any function f with low second-

order alignment loss, a quadratically transformed version of f would also achieve los

first-order/SCL alignment loss.

However, we note that the alignment loss is only part of the entire self-supervised loss,

and we must account for the uniformity loss as well. We leave proofs and empirical

investigations to future work, but we conjecture that a similar construction could

achieve low SCL as well:

Conjecture 1 Suppose f is an embedding function with LSecondOrder(f) ≤ ϵ. Then

one can construct from f a new embedding function g which satisfies LSCL ≤ h(ϵ),

where h(ϵ) is some function of ϵ.
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